# OBSERVATIONS & RECOMMENDATIONS

After reviewing data collected from **Reservoir Pond, Lyme,** the program coordinators have made the following observations and recommendations.

We congratulate your group for sampling your pond **once** this summer. However, we strongly encourage your monitoring group to sample **additional** times each summer. Typically, we recommend that monitoring groups sample **three times** per summer (once in **June**, **July**, and **August**). We understand that the number of sampling events you decide to conduct per summer will depend upon volunteer availability, and your monitoring group's goals and funding availability. However, with a limited amount of data it is difficult to determine accurate and representative water quality trends. Since weather patterns and activity in the watershed can change throughout the summer, from year to year, and even from hour to hour during a rain event, it is a good idea to sample the pond at least once per month during the summer.

If you are having difficulty finding volunteers to help sample or to travel to one of the laboratories, please call the VLAP Coordinator and DES will help you work out an arrangement.

If your monitoring group's sampling events this year were limited due to not having enough time to pick-up or drop-off samples at the Limnology Center in Concord, please remember the Plymouth State University Center for the Environment Satellite Laboratory is open in Plymouth. This laboratory was established to serve the large number of lakes/ponds in the greater North region of the state. This laboratory is inspected by DES and operates under a DES approved quality assurance plan. We encourage your monitoring group to utilize this laboratory next summer for all sampling events, except for the annual DES biologist visit. To find out more about the Center for the Environment Satellite Laboratory, and/or to schedule dates to pick up bottles and equipment, please call Aaron Johnson, laboratory manager, at (603) 535-3269.

#### FIGURE INTERPRETATION

## CHLOROPHYLL-A

Figure 1 and Table 1: Figure 1 in Appendix A shows the historical and current year chlorophyll-a concentration in the water column. Table 1 in Appendix B lists the maximum, minimum, and mean concentration for each sampling year that the pond has been monitored through VLAP.

Chlorophyll-a, a pigment found in plants, is an indicator of the algal abundance. Algae (also known as phytoplankton) are typically microscopic, chlorophyll producing plants that are naturally occurring in lake ecosystems. The chlorophyll-a concentration measured in the water gives biologists an estimation of the algal concentration or lake productivity. The median summer chlorophyll-a concentration for New Hampshire's lakes and ponds is 4.58 mg/m³.

The current year data (the top graph) show that the chlorophyll-a concentration was **5.19 mg/m³** in **August**.

The historical data (the bottom graph) show that the **2009** chlorophyll-a mean is *slightly greater than* the state and similar lakes median. For more information on the similar lake median, refer to Appendix F.

Overall, visual inspection of the historical data trend line (the bottom graph) shows a *variable* in-lake chlorophyll-a trend since monitoring began. Specifically the mean chlorophyll concentration has *fluctuated between approximately 1.97 and 9.22 mg/m³* since **2000**.

Please keep in mind that this trend is based on limited data. As your group expands its sampling program to include additional events each year, we will be able to determine trends with more accuracy and confidence.

After 10 *consecutive* years of sample collection, we will be able to conduct a statistical analysis of the historical data to objectively determine if there has been a significant change in the annual mean chlorophyll-a concentration since monitoring began.

While algae are naturally present in all lakes and ponds, an excessive or increasing amount of any type is not welcomed. In freshwater lakes and ponds, phosphorus is the nutrient that algae typically depend upon for growth in New Hampshire lakes. Algal

concentrations may increase as nonpoint sources of phosphorus from the watershed increase, or as in-lake phosphorus sources increase. Therefore, it is extremely important for volunteer monitors to continually educate all watershed residents about management practices that can be implemented to minimize phosphorus loading to surface waters.

## TRANSPARENCY

Figure 2 and Tables 3a and 3b: Figure 2 in Appendix A shows the historical and current year data for transparency with and without the use of a viewscope. Table 3a in Appendix B lists the maximum, minimum and mean transparency data without the use of a viewscope and Table 3b lists the maximum, minimum and mean transparency data with the use of a viewscope for each year that the pond has been monitored through VLAP.

Volunteer monitors use the Secchi disk, a 20 cm disk with alternating black and white quadrants, to measure how far a person can see into the water. Transparency, a measure of water clarity, can be affected by the amount of algae and sediment in the water, as well as the natural lake color of the water. **The median summer transparency for New Hampshire's lakes and ponds is 3.2 meters.** 

The current year data (the top graph) show that the non-viewscope inlake transparency was **2.6 meters** in **August**.

The historical data (the bottom graph) show that the **2009** mean non-viewscope transparency is **slightly less than** the state median and is **much less than** the similar lake median. Please refer to Appendix F for more information about the similar lake median.

The current year data (the top graph) show that the viewscope in-lake transparency was *greater than* the non-viewscope transparency on the **August** sampling event. A comparison of transparency readings taken with and without the use of a viewscope shows that the viewscope typically increases the depth to which the Secchi disk can be seen into the lake, particularly on sunny and windy days. We recommend that your group measure Secchi disk transparency with and without the viewscope on each sampling event.

It is important to note that viewscope transparency data are not compared to a New Hampshire median or similar lake median. This is because lake transparency with the use of a viewscope has not been historically measured by DES. At some point in the future, the New Hampshire and similar lake medians for viewscope transparency will be calculated and added to the appropriate graphs.

Overall, visual inspection of the historical data trend line (the bottom graph) shows a *decreasing* trend for in-lake non-viewscope transparency, meaning that the transparency has *worsened* since monitoring began in **2000**.

Please keep in mind that this trend is based on limited data. As your group expands its sampling program to include additional events each year, we will be able to determine trends with more accuracy and confidence.

Again, please keep in mind that this trend is based on only **nine** years of data. As previously discussed, after 10 consecutive years of sample collection, we will be able to conduct a statistical analysis of the historical data to objectively determine if there has been a significant change in the annual mean transparency since monitoring began.

Typically, high intensity rainfall causes sediment-laden stormwater runoff to flow into surface waters, thus increasing turbidity and decreasing clarity. Efforts to stabilize stream banks, lake and pond shorelines, disturbed soils within the watershed, and especially dirt roads located immediately adjacent to the edge of tributaries and the lake or pond should continue on an annual basis. Guides to best management practices that can be implemented to reduce, and possibly even eliminate, nonpoint source pollutants, are available from DES upon request.

## **TOTAL PHOSPHORUS**

Figure 3 and Table 8: The graphs in Figure 3 in Appendix A show the amount of epilimnetic (upper layer) phosphorus and hypolimnetic (lower layer) phosphorus; the inset graphs show current year data. Table 8 in Appendix B lists the annual maximum, minimum, and median concentration for each deep spot layer and each tributary since the pond has been sampled through VLAP.

Phosphorus is typically the limiting nutrient for vascular aquatic plant and algae growth in New Hampshire's lakes and ponds. Excessive phosphorus in a lake or pond can lead to increased plant and algal growth over time. The median summer total phosphorus concentration in the epilimnion (upper layer) of New Hampshire's lakes and ponds is 12 ug/L. The median summer phosphorus concentration in the hypolimnion (lower layer) is 14 ug/L.

The current year data for the epilimnion (the top inset graph) show that the phosphorus concentration was **12 ug/L** in **August**.

The historical data show that the **2009** mean epilimnetic phosphorus concentration is *approximately equal to* the state median and is *greater than* the similar lake median. Refer to Appendix F for more information about the similar lake median.

The current year data for the hypolimnion (the bottom inset graph) show that the phosphorus concentration was **13 ug/L** in **August**.

The historical data show that the **2009** mean hypolimnetic phosphorus concentration is **slightly less than** the state median and is **approximately equal to** the similar lake median. Please refer to Appendix F for more information about the similar lake median.

Overall, visual inspection of the historical data trend line for the epilimnion shows a *variable* phosphorus trend. Specifically, the mean annual epilimnetic phosphorus concentration has *fluctuated between approximately 5 and 17 ug/L* since monitoring began in 2000.

Overall, visual inspection of the historical data trend line for the hypolimnion shows an *increasing* phosphorus trend since monitoring began. Specifically the mean annual concentration has *worsened* since monitoring began in **2000**.

Please keep in mind that these trends are based on limited data. As your group expands its sampling program to include additional events each year, we will be able to determine trends with more accuracy and confidence.

As discussed previously, after 10 consecutive years of sample collection, we will be able to conduct a statistical analysis of the historical data to objectively determine if there has been a significant change in the annual mean phosphorus concentration since monitoring began.

One of the most important approaches to reducing phosphorus loading to a waterbody is to continually educate watershed residents about the watershed sources of phosphorus and how excessive phosphorus loading can negatively impact the ecology and the recreational, economical, and ecological value of lakes and ponds.

## TABLE INTERPRETATION

## > Table 2: Phytoplankton

Table 2 in Appendix B lists the current and historical phytoplankton and/or cyanobacteria observed in the pond. Specifically, this table lists the three most dominant phytoplankton and/or cyanobacteria observed in the sample and their relative abundance in the sample.

A phytoplankton analysis was not conducted in **2009** due to a laboratory error. We apologize for any inconvenience.

Phytoplankton populations undergo a natural succession during the growing season. Please refer to the "Biological Monitoring Parameters" section of this report for a more detailed explanation regarding seasonal plankton succession. Diatoms and golden-brown algae populations are typical in New Hampshire's less productive lakes and ponds.

# > Table 4: pH

Table 4 in Appendix B presents the in-lake and tributary current year and historical pH data.

pH is measured on a logarithmic scale of 0 (acidic) to 14 (basic). pH is important to the survival and reproduction of fish and other aquatic life. A pH below 6.0 typically limits the growth and reproduction of fish. A pH between 6.0 and 7.0 is ideal for fish. The median pH value for the epilimnion (upper layer) in New Hampshire's lakes and ponds is **6.6**, which indicates that the state surface waters are slightly acidic. For a more detailed explanation regarding pH, please refer to the "Chemical Monitoring Parameters" section of this report.

The mean pH at the deep spot this year ranged from **5.44** in the hypolimnion to **6.05** in the epilimnion, which means that the water is **slightly acidic**.

It is important to point out that the hypolimnetic (lower layer) pH was *lower (more acidic)* than in the epilimnion (upper layer). This increase in acidity near the pond bottom is likely due to the decomposition of organic matter and the release of acidic by-products into the water column.

Due to the state's abundance of granite bedrock in the state and acid deposition received from snowmelt, rainfall, and atmospheric particulates, there is little that can be feasibly done to effectively increase pond pH.

# Table 5: Acid Neutralizing Capacity

Table 5 in Appendix B presents the current year and historical epilimnetic ANC for each year the pond has been monitored through VLAP.

Buffering capacity (ANC) describes the ability of a solution to resist changes in pH by neutralizing the acidic input. The median ANC value for New Hampshire's lakes and ponds is **4.8 mg/L**, which indicates that many lakes and ponds in the state are at least "moderately vulnerable" to acidic inputs. For a more detailed explanation about ANC, please refer to the "Chemical Monitoring Parameters" section of this report.

The mean acid neutralizing capacity (ANC) of the epilimnion (upper layer) was **1.5 mg/L**, which is **much less than** the state median. In addition, this indicates that the pond is **extremely vulnerable** to acidic inputs.

# > Table 6: Conductivity

Table 6 in Appendix B presents the current and historical conductivity values for tributaries and in-lake data. Conductivity is the numerical expression of the ability of water to carry an electric current, which is determined by the number of negatively charged ions from metals, salts, and minerals in the water column. The median conductivity value for New Hampshire's lakes and ponds is **40.0 uMhos/cm**. For a more detailed explanation, please refer to the "Chemical Monitoring Parameters" section of this report.

The mean annual epilimnetic conductivity at the deep spot this year was **14.35 uMhos/cm**, which is *much less than* the state median.

The **2009** conductivity results for the deep spot and tributaries were *lower than* has been measured **since monitoring began**.

The record rainfall during the **2009 summer season** possibly diluted the ion concentration in surface waters throughout the watershed. Specifically, the significant summer rainfalls likely increased the flushing rate for many ponds allowing potential watershed pollutants to flush through the system and not concentrate in the stratified surface waters.

The in-lake conductivity has **decreased slightly** (meaning **improved**) in the pond since monitoring began. Increases in conductivity typically indicate the influence of human activities on surface water quality. Septic system leachate, agricultural runoff, iron deposits, and road runoff which typically contains road salt during the spring snow melt, can each influence conductivity readings. This

**decreasing** conductivity trend suggests the reduction of pollutants and erosion in the watershed. We hope that this improving trend continues!

# > Table 8: Total Phosphorus

Table 8 in Appendix B presents the current year and historical total phosphorus data for in-lake and tributary stations. Phosphorus is the nutrient that limits the algae's ability to grow and reproduce. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation.

The total phosphorus concentration was *slightly elevated* (16 and 17 ug/L) in Mud Pd Inlet and Townline Brook this year. Record summer rainfall likely increased stormwater runoff and nutrient loading to the tributary. As impervious surface cover increases in the watershed, stormwater runoff volumes increase. This transports phosphorus-laden stormwater into tributaries and eventually the pond. Efforts should be made in the watershed to reduce impervious surfaces and limit phosphorus sources such as fertilizer use, septic influences, agricultural impacts, and sediment/erosion control.

For a detailed explanation on how to conduct rain event sampling and stream surveys, please refer to the 2002 VLAP Annual Report special topic article, which is posted on the VLAP website at <a href="http://www.des.nh.gov/organization/divisions/water/wmb/vlap/categories/publications.htm">http://www.des.nh.gov/organization/divisions/water/wmb/vlap/categories/publications.htm</a>, or contact the VLAP Coordinator.

The total phosphorus concentration in **Cutter Brook** was **slightly elevated** (**26 ug/L**) on the **August** sampling event. The turbidity of the sample was also **slightly elevated** (**1.68 NTUs**), which suggests that the stream bottom may have been disturbed while sampling or that erosion is occurring in the watershed.

When the stream bottom is disturbed, phosphorus rich sediment is released into the water column. When collecting tributary samples, please be sure to sample where the tributary is flowing and where the stream is deep enough to collect a "clean" sample free from organic debris and sediment.

If you suspect that erosion is occurring in this area of the watershed, we recommend that your monitoring group conduct a stream survey and rain event sampling along this tributary. This additional sampling may allow us to determine what is causing the *elevated* levels of turbidity and phosphorus.

For a detailed explanation on how to conduct rain event sampling and

stream surveys, please refer to the 2002 VLAP Annual Report special topic article, which is posted on the VLAP website at <a href="http://www.des.nh.gov/organization/divisions/water/wmb/vlap/categories/publications.htm">http://www.des.nh.gov/organization/divisions/water/wmb/vlap/categories/publications.htm</a>, or contact the VLAP Coordinator.

Table 9 and Table 10: Dissolved Oxygen and Temperature Data
Table 9 in Appendix B shows the dissolved oxygen/temperature
profile(s) collected during 2009. Table 10 in Appendix B shows the
historical and current year dissolved oxygen concentration in the
hypolimnion (lower layer). The presence of sufficient amounts of
dissolved oxygen in the water column is vital to fish and amphibians
and bottom-dwelling organisms. Please refer to the "Chemical
Monitoring Parameters" section of this report for a more detailed
explanation.

The dissolved oxygen concentration was *much lower in the hypolimnion (lower layer) than in the epilimnion (upper layer)* at the deep spot on the **August** sampling event. As stratified ponds age, and as the summer progresses, oxygen typically becomes *depleted* in the hypolimnion by the process of decomposition. Specifically, the reduction of hypolimnetic oxygen is primarily a result of biological organisms using oxygen to break down organic matter, both in the water column and particularly at the bottom of the lake or pond where the water meets the sediment. When hypolimnetic oxygen concentration is depleted to less than 1 mg/L, as it was on the annual biologist visit this year and on many previous annual visits, the phosphorus that is normally bound up in the sediment may be re-released into the water column, a process referred to as *internal phosphorus loading*.

**Low** hypolimnetic oxygen levels are a sign of the pond's **aging** health. This year the DES biologist collected the dissolved oxygen profile in **August**. We recommend that the annual biologist visit for the **2010** sampling year be scheduled during **June** so that we can determine if oxygen is depleted in the hypolimnion **earlier** in the sampling year.

# > Table 11: Turbidity

Table 11 in Appendix B lists the current year and historical data for in-lake and tributary turbidity. Turbidity in the water is caused by suspended matter, such as clay, silt, and algae. Water clarity is strongly influenced by turbidity. Please refer to the "Other Monitoring Parameters" section of this report for a more detailed explanation.

The turbidity of the epilimnion (upper layer) sample was **slightly elevated** (**1.19 NTUs**) on the **August** sampling event. This suggests that a rainstorm may have recently contributed stormwater runoff to

the lake and/or an algal bloom had occurred in the lake.

The turbidity in the **Cutter Brook** sample was **slightly elevated** (1.68 NTUs) on the **August** sampling event, which suggests that the stream bottom may have been disturbed while sampling or that erosion is occurring in this area of the watershed. When the stream bottom is disturbed, sediment, which typically contains attached phosphorus, is released into the water column. When collecting tributary samples please sample where there's sufficient stream flow and depth to collect a "clean" sample free from debris and sediment.

If you suspect erosion in the watershed, we recommend conducting a stream survey to identify sediment erosion. We also recommend that your monitoring group conduct rain event sampling along this tributary. This additional sampling may allow us to determine what is causing the *elevated* levels of turbidity.

For a detailed explanation on how to conduct rain event sampling and stream surveys, please refer to the 2002 VLAP Annual Report special topic article, which is posted on the VLAP website at <a href="http://www.des.nh.gov/organization/divisions/water/wmb/vlap/categories/publications.htm">http://www.des.nh.gov/organization/divisions/water/wmb/vlap/categories/publications.htm</a>, or contact the VLAP Coordinator.

# > Table 12: Bacteria (E.coli)

Table 12 in Appendix B lists the current year and historical data for bacteria (E.coli) testing. E. coli is a normal bacterium found in the large intestine of humans and other warm-blooded animals. E.coli is used as an indicator organism because it is easily cultured and its presence in the water, in defined amounts, indicates that sewage **may** be present. If sewage is present in the water, potentially harmful disease-causing organisms **may** also be present.

Bacteria sampling was not conducted this year. If residents are concerned about sources of bacteria such as failing septic systems, animal waste, or waterfowl waste, it is best to conduct *E. coli* testing when the water table is high, when beach use is heavy, or immediately after rain events.

## > Table 13: Chloride

Table 13 in Appendix B lists the current year and the historical data for chloride sampling. The chloride ion (Cl-) is found naturally in some surfacewaters and groundwaters and in high concentrations in seawater. Research has shown that elevated chloride levels can be toxic to freshwater aquatic life. In order to protect freshwater aquatic life in New Hampshire, the state has adopted **acute and chronic** 

chloride criteria of **860 and 230 mg/L** respectively. The chloride content in New Hampshire lakes is naturally low, generally less than 2 mg/L in surface waters located in remote areas away from habitation. Higher values are generally associated with salted highways and, to a lesser extent, with septic inputs. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation.

Chloride sampling was **not** conducted during **2009**.

Table 14: Current Year Biological and Chemical Raw Data
Table 14 in Appendix B lists the most current sampling year results.
Since the maximum, minimum, and annual mean values for each parameter are not shown on this table, this table displays the current year "raw," meaning unprocessed, data. The results are sorted by station, depth, and then parameter.

## > Table 15: Station Table

As of the spring of 2004, all historical and current year VLAP data are included in the DES Environmental Monitoring Database (EMD). To facilitate the transfer of VLAP data into the EMD, a new station identification system had to be developed. While volunteer monitoring groups can still use the sampling station names that they have used in the past and are most familiar with, an EMD station name also exists for each VLAP sampling location. Table 15 in Appendix B identifies what EMD station name corresponds to the station names you have used in the past and will continue to use in the future.

# **DATA QUALITY ASSURANCE AND CONTROL**

# **Annual Assessment Audit:**

During the annual visit to your pond, the biologist conducted a sampling procedures assessment audit for your monitoring group. Specifically, the biologist observed the performance of your monitoring group and completed an assessment audit sheet to document the volunteer monitors' ability to follow the proper field sampling procedures, as outlined in the VLAP Monitor's Field Manual. This assessment is used to identify any aspects of sample collection in which volunteer monitors failed to follow proper procedures, and also provides an opportunity for the biologist to retrain the volunteer monitors as necessary. This will ultimately ensure samples that the volunteer monitors collect are truly representative of actual lake and tributary conditions.

Overall, your monitoring group did an *excellent* job collecting samples on the annual biologist visit this year! Specifically, the members of your monitoring group followed the proper field sampling procedures and there was no need for the biologist to provide additional training. Keep up the good work!

## **USEFUL RESOURCES**

Acid Deposition Impacting New Hampshire's Ecosystems, DES fact sheet ARD-32, (603) 271-2975 or

www.des.nh.gov/organization/commissioner/pip/factsheets/ard/documents/ard-32.pdf.

Best Management Practices to Control Nonpoint Source Pollution: A Guide for Citizens and Town Officials, DES Booklet WD-03-42, (603) 271-2975 or

www.des.nh.gov/organization/commissioner/pip/publications/wd/docu ments/wd-03-42.pdf.

Erosion Control for Construction in the Protected Shoreland Buffer Zone, DES fact sheet WD-SP-1, (603) 271-2975 or http://des.nh.gov/organization/commissioner/pip/factsheets/sp/documents/sp-1.pdf

Lake Protection Tips: Some Do's and Don'ts for Maintaining Healthy Lakes, DES fact sheet WD-BB-9, (603) 271-2975 or www.des.nh.gov/organization/commissioner/pip/factsheets/bb/docume nts/bb-9.pdf.

NH Stormwater Management Manual Volume 1: Stormwater and Antidegradation, DES fact sheet WD-08-20A, (603) 271-2975 or http://des.nh.gov/organization/commissioner/pip/publications/wd/doc uments/wd-08-20a.pdf

NH Stormwater Management Manual Volume 2: Post-Construction Best Management Practices Selection and Design, DES fact sheet WD-08-20B, (603) 271-2975 or

http://des.nh.gov/organization/commissioner/pip/publications/wd/doc uments/wd-08-20b.pdf

NH Stormwater Management Manual Volume 3: Erosion and Sediment Controls During Construction, DES fact sheet WD-08-20C, (603) 271-2975 or

http://des.nh.gov/organization/commissioner/pip/publications/wd/doc uments/wd-08-20c.pdf

Shorelands Under the Jurisdiction of the Comprehensive Shoreland Protection Act, DES fact sheet SP-4, (603) 271-2975 or http://des.nh.gov/organization/commissioner/pip/factsheets/sp/documents/sp-4.pdf.

Vegetation Maintenance Within the Protected Shoreland, DES fact sheet WD-SP-5, (603) 271-2975 or http://des.nh.gov/organization/commissioner/pip/factsheets/sp/documents/sp-5.pdf